

Centro de Pesquisas em Desenvolvimento Humano & Violência

Offender specialization among z-proso participants

5th z-proso International Research Network (zIReN) Meeting

14th – 16th September 2023 Max Plank Institute for the Study of Crime, Security and Law, Freiburg i. Br.

JACOBS CENTER

Hugo S. Gomes hugo.santos.gomes@gmail.com

14 September 2023

OFFENDING SPECIALIZATION

• Specialization reflects systematic differences in the type of offenses committed by individuals.

(Osgood & Schreck, 2007)

• "Should criminological theories assume that all types of offending reflect the same underlying theoretical construct (e.g. an antisocial personality) or should they assume that violent offending reflects an underlying violent potential, that theft reflects an underlying thieving potential, etc?"

(Farrington, 2023, p. 125)

- Evidence of specialized offenders has been elusive.
 - Early studies strongly supported offending versatility.

(Schreck, 2014)

INTRODUCTION

OFFENDING SPECIALIZATION

- Limitations in the availability of statistical methods.
 - Recent studies increasingly find more indications of specialization.
- Most frequently used methods:
 - Forward Specialization Coefficient (FSC) Single value summary based on transition matrices.
 - Diversity index (D index) Individual-level value summary of specialization.
 - Latent class analysis (LCA) Provides a sense of the nature of offending patterns.

Methods

OFFENDING SPECIALIZATION - LCA

Study	Country	Sample (N)	Methods	Key findings
Sullivan et al. (2009)	USA	1,308 juvenile inmates incarcerated in three California Youth Authority (CYA)	LCA (prevalence) K = 16	 Classes Violent and sex crimes Property and less violent offenses Diverse offenses
Besemer (2012)	UK	CSDD (fathers)	LCA (Prevalence of convictions) K = 10	2 classes 1. Violent/other 2. Property
Francis et al. (2004)	USA	The Home Office Offenders Index birth cohort for 1953 provided official conviction histories up to 1993 (age 40) Separately for males and females.	LC/X (Prevalence) K = 71 for males K = 29 for females	 Yale offending 9 classes Female offending 3 classes

Main research question • Is there evidence of specialized offenders in the Pelotas cohort?

Murder rates across the world visualised

Homicide rates per 100,000 people by country or territory (2012 or latest year)

Pelotas

POPULATION 340,000

Relatively Poor City In South Brazil

Pelotas, Rio Grande do Sul, Brazil

PELOTAS BIRTH COHORT STUDIES

20,000 FAMILIES

HOMICIDE TRENDS IN PELOTAS DURING THE PELOTAS BIRTH COHORT STUDIES

PARTICIPANTS

RESULTS

SPECIALIZATION

• Offenses were classified into 7 different categories:

Latent Class Analysis (LCA) – for MALES

• Based on Bayesian Information Criterion (BIC = 14322), the 6-class model seems to best fit our data

	Log(Intercepts)						
Offending categories	Class 1 (75.99%)	Class 2 (2.11%)	Class 3 (1.48%)	Class 4 (15.31%)	Class 5 (4.59%)	Class 6 (0.53%)	
1. Lethal Violent Offenses	-6.14	-1.67	-0.62	-3.41	-3.99	-0.09	
2. Serious Violent Offenses	-4.75	-0.79	0.98	-3.09	-1.36	1.90	
3. Moderate Violent Offenses	-2.59	1.94	0.29	0.55	-0.31	1.38	
4. Sexual Offenses	-7.00	-2.15	-1.97	-3.20	-73.46	-2.72	
5. Property Offenses	-3.28	0.60	0.92	-1.26	0.28	2.67	
6. Drug Offenses	-4.09	-0.32	-0.61	-3.82	-0.07	0.50	
7. Other Offenses	-3.24	0.51	0.50	-0.79	-1.10	1.05	

• Class 1 (75.99%) – Non-offenders

Results: Specialization

- Class 1 (75.99%) Non-offenders
- Class 2 (2.11%) Moderate-violent versatile offenders

Results: Specialization

- Class 1 (75.99%) Non-offenders
- Class 2 (2.11%) Moderate-violent versatile offenders
- Class 3 (1.48%) Serious-Violent versatile offenders

- Class 1 (75.99%) Non-offenders
- Class 2 (2.11%) Moderate-violent versatile offenders
- Class 3 (1.48%) Serious-Violent versatile offenders
- Class 4 (15.31%) Specialized moderate-violent offenders

Results: Specialization

- Class 1 (75.99%) Non-offenders
- Class 2 (2.11%) Moderate-violent versatile offenders
- Class 3 (1.48%) Serious-Violent versatile offenders
- Class 4 (15.31%) Specialized moderate-violent offenders
- Class 5 (4.59%) Low-violent offenders

- Class 1 (75.99%) Non-offenders
- Class 2 (2.11%) Moderate-violent versatile offenders
- Class 3 (1.48%) Serious-Violent versatile offenders
- Class 4 (15.31%) Specialized moderate-violent offenders
- Class 5 (4.59%) Low-violent offenders
- Class 6 (0.53%) Serious-Violent versatile offenders (high property)

Latent Class Analysis (LCA) – for FEMALES

 Based on Bayesian Information Criterion (BIC = 5527), the 2-class model seems to best fit our data

	Log(Interc	epts)	
Offending categories	Class 1 (92.70%)	Class 2 (7.30%)	
1. Lethal Violent Offenses	-7.14	-5.23	
2. Serious Violent Offenses	-6.26	-3.05	
3. Moderate Violent Offenses	-2.68	0.71	
4. Sexual Offenses	-7.01	-3.95	
5. Property Offenses	-3.88	-0.68	
6. Drug Offenses	-6.55	-2.16	
7. Other Offenses	-3.77	-0.44	

- Class 1 (92.70%) Non-offenders
- Class 2 (7.30%) Versatile offenders

Offender specialization among z-proso participants

• Self-Reports of offending

- According to previous studies (Murray et al., 2021), we considered seven types of delinquent behavior:
 - Stealing at home,
 - Shoplifting less than 50 CHF,
 - Shoplifting more than 50CHF,
 - Vehicle theft,
 - Fare dodging,
 - Vandalism, and
 - Assault.
- Based on these types of crimes, we have created composite variables that included information in waves K5-K9:
 - Delinquency prevalence, frequency, and variety.

Methods

CURRENT STUDY: DATA ANALYSIS

- Descriptive statistics

 Prevalence, Frequency, and Variety of offending
 Comparisons across participants' sex were carried out using:

 Logistic regression for binary outcomes;
 Negative binomial regression for continuous outcomes.

 DATA ANALYSIS

 Descriptive statistics
 Prevalence, Frequency, and Variety of offending
 Comparisons across participants' sex were carried out using:

 Logistic regression for binary outcomes;
 Negative binomial regression for continuous outcomes.

 Latent Class Analysis (LCA)

 R package depmixS4 (Visser & Speekenbrink, 2010) latent/ hidden Markov models
 - Allows to test LCA with count data
 - R package poLCA (Linzer & Lewis, 2011)
 - binary data

Prevalence of offending

Prevalence of offending

Prevalence of offending

Latent Class Analysis (LCA) – full sample

 Based on Bayesian Information Criterion (BIC = 7606), the 2-class model seems to best fit our data

Fit statistics	2 classes	3 classes	4 classes	5 classes	6 classes
Likelihood	178.86	127.24	85.70	71.19	63.13
AIC	7527	7491	7466	7467	7475
BIC	7606	7611	7628	7672	7721
Group size % ^a					
C1	22.09%	8.59%	13.43%	6.06%	6.14%
C2	77.91%	28.66%	6.21%	63.39%	8.81%
C3		62.74%	63.39%	5.85%	12.35%
C4			16.97%	12.20%	13.43%
C5				12.49%	58.05%
C6					1.23%

Latent Class Analysis (LCA) – full sample 2-class model

Latent Class Analysis (LCA) – full sample 3-class model

Classes; population share

Latent Class Analysis (LCA) – full sample 4-class model

Classes; population share

Latent Class Analysis (LCA) – Males

 Based on Bayesian Information Criterion (BIC = 4546), the 2-class model seems to best fit our data

Fit statistics	2 classes	3 classes	4 classes	5 classes	6 classes
Likelihood	138.12	104.31	83.55	74.24	61.08
AIC	4478	4460	4455	4462	4465
BIC	4546	4565	4597	4640	4680
Group size % ^a					
C1	29.11	36.77	18.80	19.50	13.65
C2	70.89	50.84	21.03	18.11	50.97
C3		12.40	50.84	47.08	13.79
C4			9.33	7.94	13.51
C5				7.38	1.53
C6					6.55

Latent Class Analysis (LCA) – Males 2-class model

Classes; population share

Latent Class Analysis (LCA) – Males 3-class model

Classes; population share

Dove

Latent Class Analysis (LCA) – Males 4-class model

Classes; population share

Latent Class Analysis (LCA) – Females

• Based on Bayesian Information Criterion (BIC = 2951), the 2-class model seems to best fit our data

Fit statistics	2 classes	3 classes	4 classes	5 classes	6 classes
Likelihood	86.80	59.89	54.15	51.28	37.27
AIC	2883	2872	2883	2896	2898
BIC	2951	2976	3022	3071	3109
Group size % ^a					
C1	91.45	11.69	7.50	10.49	71.66
C2	8.55	8.40	16.34	4.95	4.05
C3		79.91	65.97	17.84	4.50
C4			10.19	60.42	9.75
C5				6.30	2.40
C6					7.65

Latent Class Analysis (LCA) – Females 2-class model

Classes; population share

Latent Class Analysis (LCA) – Females 3-class model

Latent Class Analysis (LCA) – Males 4-class model

Classes; population share

- Based on z-proso self-reports of offending we found no evidence of specialization.
- This finding gives support to the notion of general crime theories.

- Future directions:
 - Consider the frequency of offending.
 - Can we create a composite variable with low-frequency crimes (e.g., violent offenses)?
 - Comparison with officially recorded offending.
 - Does specialization change over the life-course?

Centro de Pesquisas em Desenvolvimento Humano & Violência

Offender specialization among z-proso participants

5th z-proso International Research Network (zIReN) Meeting

14th – 16th September 2023 Max Plank Institute for the Study of Crime, Security and Law, Freiburg i. Br.

JACOBS CENTER

Hugo S. Gomes hugo.santos.gomes@gmail.com

14 September 2023