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Many common chronic diseases of aging are negatively associated with socioeconomic
status (SES). This study examines whether inequalities can already be observed in the
molecular underpinnings of such diseases in the 30s, before many of them become prev-
alent. Data come from the National Longitudinal Study of Adolescent to Adult Health
(Add Health), a large, nationally representative sample of US subjects who were
followed for over two decades beginning in adolescence. We now have transcriptomic
data (mRNA-seq) from a random subset of 4,543 of these young adults. SES in the
household-of-origin and in young adulthood were examined as covariates of a priori-
defined mRNA-based disease signatures and of specific gene transcripts identified de
novo. An SES composite from young adulthood predicted many disease signatures, as
did income and subjective status. Analyses highlighted SES-based inequalities in
immune, inflammatory, ribosomal, and metabolic pathways, several of which play cen-
tral roles in senescence. Many genes are also involved in transcription, translation, and
diverse signaling mechanisms. Average causal-mediated effect models suggest that body
mass index plays a key role in accounting for these relationships. Overall, the results
reveal inequalities in molecular risk factors for chronic diseases often decades before
diagnoses and suggest future directions for social signal transduction models that trace
how social circumstances regulate the human genome.

social inequality j social genomics j biodemography j life-span development j social epidemiology

Contemporary cohorts of Americans in early adulthood, spanning the third and fourth
decades of life, are generally disease-free but notably at risk for debilitating conditions
in the years to follow (1). Indeed, the prevalence of many common chronic conditions
that characterize older adults—including cardiovascular disease (CVD), rheumatoid arthri-
tis, chronic obstructive pulmonary disease (COPD), and Alzheimer’s disease—increase
markedly from the 40s onward (2–7). By age 65, almost seven in ten Americans have two
or more such diagnoses (8). This health pattern of aging, reflecting the development of
precursor risk in young adulthood and later diagnosis, illustrates how decades of social
and biological wear and tear can eventuate in chronic disease states (9, 10).
Such wear and tear, however, involving diverse forms of stressors, is not randomly

distributed in the population. Indeed, common adult diseases are characterized by a socio-
economic status (SES) gradient, comprising health differences by education, income, occu-
pation, and subjective social status (11–17). In studies of older adults (typically 50–70 y
old), increasing childhood and adult SES are negatively associated with mechanisms that
drive many diseases of adulthood and that are indicated by gene expression patterns in
circulating peripheral blood. Pro-inflammatory action is most commonly observed among
people with low SES backgrounds (18–23), with additional evidence for suppressed antivi-
ral response (24). This pattern of gene regulation has been described as a “conserved tran-
scriptional response to adversity” (CTRA), a characteristic cross-species reaction to sudden
stressors (25) that, if activated for prolonged periods, negatively impacts health (26).
Among young adults, low SES in the household-of-origin has been linked to a

“defensive phenotype” characterized by up-regulated transcription of genes controlled
by the CREB/ATF and nuclear factor κB (NF-κB) transcription control pathways and
down-regulated activity of genes controlled by the glucocorticoid receptor, indicating
pro-inflammatory action (18) that is consistent with the CTRA model. Whole-genome
studies also observe associations between adult SES and a wide range of other disease-
generating mechanisms, including extracellular signaling and cellular differentiation
(23, 27). However, little is known about socioeconomic inequalities in the molecular
precursors of late life diseases in early adulthood, before those diseases become prevalent
[see (18) for an initial, targeted analysis]. In the present study, we used a combination of
disease-based hypothesis-testing and unbiased discovery to map socioeconomic variations
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in the molecular precursors to the common chronic diseases in a
well-powered sample of young adults in the United States. These
analyses provide an unprecedented opportunity to discover the
molecular pathways through which socioeconomic disparities in
health in later life are structured by socioeconomic influences on
molecular function decades earlier.
We draw on multiple indicators of SES in both the house-

hold-of-origin and in young adulthood and mRNA-based sig-
natures of these chronic conditions in a sample of 4,543 young
adults participating in the National Longitudinal Study of
Adolescent to Adult Health (Add Health) (28). The data are
derived from the largest nationally-representative study of young
adults with blood transcriptomic data. The signatures reflect
mRNA abundance levels of genes that have been empirically iden-
tified as markers of common, chronic adult diseases in genome-
wide and genome-wide expression studies. Thus, the signatures
describe the functional genomic action of diverse biological pre-
cursors to chronic conditions in a sentinel tissue.
The analyses focus on three descriptive tasks: 1) examining

associations between standard indicators of SES in the house-
hold-of-origin and in young adulthood and a priori-defined
disease signatures; 2) identifying, de novo, genes that are differen-
tially expressed (DE) as a function of SES, as well as their biolog-
ical significance; and 3) considering whether associations
observed in steps (1) and (2) may be explained by key risk factors
in the young adult population of the United States (body mass
index [BMI], current smoking status, alcohol consumption, gen-
eral perceived stress, difficulty paying bills, and health insurance).
Previous research was insufficiently powered to test for putative
mechanisms linking SES to gene expression profiles. Knowledge
of such mechanisms may sharpen our understanding of life
course patterns of molecular risk.

Results

Young Adult SES and Later Adult Disease Signatures. We begin
by testing the hypothesis that at least one gene in a signature is

significantly associated with indicators of SES (Fig. 1A) and then
identify gene sets within signatures that are associated with SES,
preserving the distinction between up- and down-regulation (Fig.
1B). In addition to the disease signatures, we also examined a sig-
nature for inflammation (designated “1KI”) (29). Neither the
household-of-origin SES composite nor any of its indicators were
associated with any disease signature, and so parental SES is not
considered further. Showing the results for adult SES among
respondents who have not been diagnosed with these diseases, Fig.
1A reveals that, first, as expected, the 1KI was associated with the
adult SES composite (t = –8.73, P = 5.42 × 10�14) and with
education (t = –5.77, P = 6.16 × 10�5), income (t = �6.73,
P = 2.16 × 10�7), subjective status (t = –4.68, P = 6.16 ×
10�7), and occupation (t = –6.26, P = 6.20 × 10�6). Second,
the adult SES composite was associated with all disease signatures:
Alzheimer’s (t = –5.29, P = 2.01 × 10�5) asthma (t = –5.85,
P = 3.92 × 10�6), chronic kidney disease (CKD, t = –7.21,
P = 1.07 × 10�9), COPD (t = –5.93, P = 9.14 × 10�7), CVD
(t = –4.62, P = 3.35 × 10�4), depression (t = –8.73, P = 5.42 ×
10�14), diabetes type 2 (t = –3.82, P = 6.16 × 10�3), hyperten-
sion (t = –5.70, P = 5.60 × 10�6), and rheumatoid arthritis
(t = –5.51, P = 7.57 × 10�6). Finally, the young adult SES
composite, income, occupation, and subjective status were the
predominant correlates of the signatures.

Given the well-established emphasis on inflammatory path-
ways in extant research, we distinguished between patterns
that reflect key inflammation-related genes (indicated by an
inflammation signature) and other biological mechanisms. The
patterns in Fig. 1A were observed when genes in the 1KI signa-
ture were excluded from the disease signatures (reported in SI
Appendix, Fig. S1). The results reported in Fig. 1A were also
recalculated for the entire mRNA sample, including subjects
who reported diagnosis of at least one of the ten diseases (i.e.,
thus, the estimates may be biased by colliders). These results
are reported in SI Appendix, Fig. S2 and suggest no notable
changes in patterns reported in Fig. 1A. To shed light on the
robustness of these associations, we present e-values for total

Fig. 1. Associations between SES and disease signatures. (A) Omnibus statistical significance (P on the �log10 scale) for associations between adult SES and
disease signatures. The omnibus P values were calculated as the minimum (across all genes in the disease sets) FDR-corrected P value derived from a
whole-genome (limma) linear regression for the association between SES and each gene in the signature with full controls. The reported significance thus
indicates whether at least one gene in the disease set is predicted by SES, with type I errors corrected for the whole genome. (B) Number of up- and down-
regulated clusters of genes associated with SES. The entire genome was clustered using WGCNA to identify clusters (25 in total). For each disease signature,
its constituent genes were matched to the whole genome clusters and, within these clusters, to the up- or down-regulated subset. Within these groups,
abundance levels were averaged. For example, 101 genes in the Alzheimer’s signature belonged to 18 of the 25 whole genome clusters; of these 18, the SES
composite was associated with the down-regulated portion of four clusters. Specific genes in these four clusters are reported in Dataset S1 (for further
details, see SI Appendix, Fig. S12B).
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effects in SI Appendix, Table S1. Results suggest that associa-
tions involving occupation are relatively susceptible to effects of
unmeasured confounds.
Fig. 1B reports associations between indicators of SES and

subsets of the disease signatures that overlap with the whole
genome clusters (see SI Appendix, Fig. S12 A and B for analytic
workflow). Enriched pathway analysis of the significantly pre-
dicted clusters revealed the functional significance of genes in
significant clusters in Fig. 1B. The patterns in Fig. 1B were gen-
erally unchanged when genes in the 1KI signature were excluded
from the disease signatures (SI Appendix, Fig. S1) The full Reac-
tome results are reported in Dataset S1, and the figure and data-
set suggest several conclusions. First, enriched pathways reflect a
diverse range of biological processes that are both up- and down-
regulated, suggesting that SES perturbs many biological systems
involved in chronic disease in complex ways. The pathways asso-
ciated with 1KI are illustrative. Most prominently, and consistent
with past research, these pathways include manifold aspects of
immunity and inflammation: for example, HLA- genes (human
leukocyte antigen, associated with regulation of the immune sys-
tem, infectious diseases, diabetes type II, and cancers); CD- genes
(referring to immune-related cell surface signaling); IRF- genes
(interferon regulatory factors involved in antiviral response); IL-
genes (referring to interleukins); and many types of signaling
(e.g., cytokine, NOTCH- and MAPK- genes). These same path-
ways may be down-regulated (albeit for different dimensions of
SES), suggesting that associations between SES and mRNA activity
are not uniformly up- and down-regulated for a given pathway.
Second, the SES composite, income, occupation, and subjec-

tive status are associated with specific disease signature clusters.
Although different diseases often share common pathways,

there is little, if any, overlap in specific genes in these shared
pathways. Similarly, the same pathways may be enriched both
for the 1KI and specific disease signatures, but there is no nota-
ble overlap in specific genes. Finally, the genes identified in
Reactome pathways are typically highly multifaceted in their
functions but a focus on patterns suggests that the functional
significance of genes identified in Fig. 1B clusters reflect diverse
aspects of immunity and inflammation, cell cycle (especially
mitosis and apoptosis), transcription and translation, cell sur-
face interactions, signaling, and metabolism (see Dataset S1).

SES and Whole-Genome Differential Expression. In addition to
the disease and 1KI signatures, which were defined a priori, we
also identified other empirical genome-wide transcriptomic
correlates of young adult SES, income, education, occupation,
and subjective status. DE genes were identified with a whole-
genome (limma) linear regression for the association of SES
with each gene with full controls with false discovery rate
(FDR) correction of P values (P < 0.05) over genes not in the
signatures; results are reported in SI Appendix, Fig. S3. The
SES composite is associated with 121 DE genes (53 over-
expressed, and 68 under-expressed), of which 42 are unique to
the SES composite and 79 are shared with indicators of SES.
Income and subjective status are associated with 57 and 56 genes,
respectively, but virtually all of these genes are also identified by
variation in the SES composite. SES in the household of origin
was associated with few DE genes (19 genes) and so is not con-
sidered further. Volcano plots are shown in SI Appendix, Fig. S4.

To identify the specific functional pathways related to SES, we
examined DE genes with Reactome; the results are summarized in
Fig. 2 and details are reported in Dataset S2. Many pathways

Fig. 2. Pathway enrichment of the de novo differentially expressed genes by adult SES. Significantly enriched Reactome pathways (with parent nodes
reported to the Right, child nodes to the Left) for the differentially expressed genes by indicators of young adult SES, excluding genes from disease and 1KI
signatures from Fig. 1. The size of the circle signifies the number of genes that contribute to the significant enrichment in a pathway and the color of the cir-
cle indicates Cramer’s V, a measure of the magnitude of association.
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shown in Fig. 2—including cellular response to stress, nervous
system development, infectious disease, translation, nonsense-
mediated decay, and rRNA processing—reflect a core of DE
genes related to ribosomes and translation (a large number of
RPL- and RPS- genes). These same genes figure prominently as
part of a ribosomal subnetwork of a previously-identified senes-
cence signature (30). The infectious disease pathway reflects genes
induced by viral infections (e.g., influenza).
Genes associated with metabolism are prominent. Genes

involved in the citric acid cycle (TCA) and respiratory electron
transport chain are DE by the SES composite, income, and
subjective social status. These pathways include genes encoding
protein subunits essential for the proper functioning of
mitochondrial oxidative phosphorylation. Dysregulation of the
aerobic metabolism is accompanied by disruptions in the amino
acid metabolism, predominantly by several genes involved in
translation (RPL- and RPS- genes). Metabolic disruption, par-
ticularly in aerobic energy generation (TCA cycle and electron
transport chain), is associated with a wide variety of diseases and
may act as a primary source of age-related disorders (31, 32).

Risk Factors Associated with SES and Disease Signatures.
Having examined SES correlates of mRNA signatures defined
a priori as disease and 1K signatures and DE genes identified de
novo, we asked whether commonly studied behavioral risk
factors—BMI, current smoking status, alcohol consumption,
general perceived stress, difficulty paying bills, and access to
health insurance—could explain the observed associations. BMI
most consistently accounted for a substantial part of the associ-
ations reported in Fig. 1B and also the de novo genes. Fig. 3

reports the proportion mediated by BMI for the significantly
predicted clusters derived from the weighted correlation net-
work analysis (WGCNA) of the whole genome (see Fig. 1B
and SI Appendix, Fig. S12B). The proportion of mediation
ranged from 8.1% (education and up-regulated diabetes) to
90.3% (SES composite and rheumatoid arthritis). In addition
to the patterns involving BMI, we found that current smoker
status emerged as a possible mediator between the SES compos-
ite and income and many disease signatures (SI Appendix, Fig.
S5B). We then calculated the joint ratio of mediation (joint
mediated effect/total effect) accounted for by all mediators
simultaneously (using R package multimediate) for each cluster
that significantly accounted for an SES-disease association (e.g.,
the percent of all mediators across three clusters that account
for the SES composite-Alzheimer’s). The results, reported in SI
Appendix, Fig. S6, show that many of the percentages increase
appreciably, although some results are no longer significant
(reflecting a P value based on the joint mediation of all mediators).

The de novo genes were clustered in the same manner used
with the signatures (Fig. 1B), resulting in 21 clusters that cate-
gorized the 121 DE genes. SI Appendix, Fig. S7 reports the
mediational results for BMI, and SI Appendix, Fig. S8 reports
the multiple mediator results. Patterns suggest that BMI could
explain much of the associations between indicators of SES and
SES-based clusters of de novo genes, but that the other mediators
often increase the median proportion mediated considerably.

Finally, we examined e-values for the mediational models
(see SI Appendix, Table S2) and results suggest that patterns
involving the SES composite and occupation are relatively sen-
sitive to unmeasured confounds.

Fig. 3. Mediational models for BMI and significant clusters associated with disease signatures. Median percent mediated ratio (ACME/total effect) (superim-
posed number): average expression of significant clusters in Fig. 1B were used for mediational models. P values are corrected within column and significant
mediational results for each signature combined using Fisher’s method. The color scheme is the same as that in Fig. 1B. Negative values suggest a suppres-
sion pattern.
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Discussion

The analyses revealed socioeconomic inequalities in young
adults’ molecular risk profiles for common chronic conditions
of later adulthood in the United States and, additionally, in
gene expression profiles associated with aging. Decades before
these diseases are commonly observed in the population, their
gene expression indicators show clear social status gradients, espe-
cially with respect to the young adult SES composite, income,
and subjective status. These associations were generally observed
regardless of the inclusion of genes in the 1KI inflammation sig-
nature, which is a proxy for key inflammation-related genes.
These analyses also identified de novo SES gradients in gene sets
extending beyond the traditionally emphasized functional path-
ways of inflammation and immunity. As such, the present results
are consistent with prior research linking inflammation and
immune regulation to social adversity (25, 33, 34), but they also
identify additional biological domains through which SES might
potentially impact health. Evidence suggested that SES-related
differences in BMI contribute to many associations between SES
and the signatures and genes identified de novo.
The chief commonalities with previous studies include the

prediction of the a priori-defined 1KI inflammatory signature by
SES and evidence showing the sensitivity of pathways involving
MAPK-, TLR-, IRF-, and IL- genes (18, 35, 36), among others.
The present study also identified unique sets of status-graded

genes and pathways. With respect to inflammation and immu-
nity, human leukocyte antigen (HLA-) genes and RIPK genes,
for example, were prominent. Additional biological pathways
associated with SES included genes central to the metabolism
of RNA (RPL- and RPS- genes), and genes involved in metabo-
lism (e.g., ALOX-, PTG-, and CSNK-). Given that genes typi-
cally have diverse functions, these pathways are interpretive but
we have emphasized patterns. Among the functions of many of
these genes are diverse intra- and extracellular signaling mecha-
nisms (23, 27), suggesting that SES may be involved in key
aspects of social signal transduction.
Two functional pathways are especially noteworthy: the

ribosomal protein-encoding genes and genes associated with
metabolism, both because of their central role in senescence
and diseases of aging. These pathways have not previously been
noted as a correlate of SES, and further study of overlap
between genes related to SES and senescence is warranted.
Intriguingly, reduced expression of these ribosomal genes char-
acterizes a transcriptomic aging signature (30). In the present
case, we observed down-regulation of ribosomal protein genes
(although not the same specific genes in the Peters senescence
network) with increasing SES, a dysregulative pattern that calls
for further study but that may stem from an association between
low SES and increased ribosome metabolic activity associated
with increased BMI. Relatedly, several of the associations are
inverse to what might be expected. The abundance levels of com-
posite scores and specific genes are best interpreted as indicators
of disease-related gene activity. That is, we find SES-graded
differential expression in genes that have been specified a priori
but in some instances the direction of association may be not
as expected or the expected direction may not be known (e.g., if
the genes were identified by genetic polymorphism associations
with disease in the absence of transcript abundance measures).
Future research will be required to identify the specific genes
involved in specific disease etiologies at different points in life.
The results also depart from previous research insofar as they

show little evidence that SES in the household-of-origin pre-
dicted disease expression profiles. Previous studies have reported

relationships between household SES and inflammation/immunity,
although in different national contexts (Canada, Italy, and
Switzerland) and with different measures of parental SES
(18, 19). We recoded our household occupational data to
examine manual versus nonmanual paternal occupation (19),
but the null findings with respect to occupation and disease
signatures were robust.

Most prior research on SES and molecular risk draws on
social signal transduction models based on stress biology (26,
37, 38), which suggests that social gradients in health stem at
least in part from differential exposures and vulnerabilities to
stressors (predominantly chronic psychosocial stressors). Although
the present findings are consistent with this hypothesis in some
respects (see SI Appendix, Fig. S5C), our research suggests addi-
tional transducing paths. Some of the associations between SES
and disease-related gene expression may not involve stressors
per se but rather income, education, and prestige as “flexible
resources” that influence health in myriad ways beyond stress
(39). Educational and financial resources are often needed to
maintain one’s health via, for example, health literacy, access to
fresh foods and preventive medical care, housing in areas with
relatively low levels of toxicants, ready access to green spaces
for exercise, and inclusion in social networks of people with
resources (40).

Indeed, the observed SES gradients were most consistently
accounted for by BMI, which likely reflects the widespread
damaging effects of subcutaneous adipose tissue on physiology,
including inflammation (41, 42). Although stress likely contrib-
utes to adiposity (e.g., via “stress eating”), other SES-graded
social and environmental mechanisms (e.g., food ecologies,
etc.) also play substantial roles, possibly including a conserved
response to status involving appetite (33). An expansion of
current social signal transduction models beyond stressors to
include other mechanistic pathways, especially obesogenic ones,
is warranted.

Our study is unique for its large, diverse, and representative
sample that includes standard measures of SES in the house-
hold-of-origin and in young adulthood and mRNA abundance
levels from circulating whole blood. However, several limita-
tions should be noted. First, experimental studies of rhesus
macaques, a species that lives in social hierarchies and is closely
related to humans, have shown that the distinct cell popula-
tions that constitute peripheral blood mononuclear cells condi-
tion gene expression (34). The sensitivity of specific cell types
(e.g., natural killer cells) to status needs to be mapped out with
greater precision in humans. Second, while the data allow for
multivariate descriptive conclusions, the basis for causal infer-
ence is circumscribed, and the results should be construed in
descriptive terms (see SI Appendix, Fig. S11 for major assump-
tions needed for causal inference). Although strategies exist to
identify the effects of income, education, and occupation indi-
vidually, such approaches are often limited in terms of their
external validity. Third, although our measures of SES are stan-
dard operationalizations, they do not fully account for the
complexity of SES, which likely includes compositional effects
(that directly reflect inequality) and intersectional patterns
involving sex, race, and ethnicity. The study of such nuances
will require larger samples. Additionally, our study design does
not allow us to disentangle the importance of young adulthood
from that of recency, which is perfectly confounded in this
sample. The repeated collection of mRNA in a large, diverse
panel study—beginning earlier in the life course—would facili-
tate a better understanding of the origins of these forms of
molecular risk. Finally, individual mRNA molecules are highly
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transient, which may create stochastic patterns with consider-
able noise, and effect sizes are small; on the other hand, biologi-
cal models of chronic stress recognize sources of stability in
average mRNA abundance that derive from relatively stable
patterns of gene regulation and de novo transcription (26). The
present results reflect an additional stabilizing factor in that
they are based on groups of genes, specified a priori, that have
well-established significance for human health (43).
The present study reports SES-based inequalities in molecu-

lar risk factors for common chronic diseases of later adulthood
in the decades before such conditions are diagnosed with fre-
quency, and the analyses suggest mechanistic hypotheses for
SES-related inequalities. Disparities in diseases of late adult-
hood likely reflect disparities in molecular risk in young adult-
hood. This risk involves not only inflammatory and immune
pathways but also other biological pathways, and our de novo
results highlight metabolic, ribosomal, and diverse signaling
pathways as important targets for future mechanistic research
on health disparities. Moreover, among the common risk mech-
anisms studied here, BMI consistently emerged as a plausible
mediator of these associations. The results highlight the need
for multifaceted policies and interventions that target stressors
and obesogenic mechanisms early in life, before these socially
based mechanisms eventuate in clinically relevant, costly health
impairments.

Materials and Methods

Data. The data for this study are from Add Health, a representative study of US
adolescents in grades 7–12 in 1994–1995 (age range, 12–18; mean age, 15.3;
SD = 1.6) who were followed into adulthood over five waves of data collection
(28). Participants in Wave V of Add Health consented to provide an intravenous
blood sample in PAXgene RNA tubes. These samples were collected in
2016–2017 (44). The data for the present study include 4,543 transcriptomic
profiles (based on mRNA-seq data; age range, 33–43; mean age, 37.33;
SD = 1.85). Assuming an average 1.1-fold change among 20% DE genes
(80% assumed not DE), an analysis of power (using R package ssizeRNA) indi-
cated that a sample of 971 would be sufficient to attain average power of
0.8 while controlling FDR to 0.05 over the genome. SI Appendix, Fig. S9 shows
how the analytic sample was derived, and SI Appendix, Table S3 documents
representativeness relative to the Wave V total sample (n = 7,769). The mRNA
sample is somewhat more female and higher on SES (reflecting education
and occupation).

Measures. Transcriptome profiles were derived by 30 end sequencing whole
blood polyadenylated RNA (for a full description, see SI Appendix, Study
Protocol). The resulting mRNA abundance levels from circulating whole blood
were then used to compute composite scores based on previously defined
disease signatures. SI Appendix, Table S4 presents the sources and properties of
the empirically-derived disease signatures, and the list of signatures is shown in
Fig. 1A. Given the central role of inflammation in many chronic diseases and its
prominence in past social genomic research, we also included the 1K inflamma-
tion signature (1KI) (29). Analyses were conducted with and without the 1KI
gene set, and differences between analyses are a heuristic approximation of the
relative importance of central, inflammation-related genes. There was very little
overlap between the ten disease signatures in terms of their constituent genes,
but there was some overlap with the 1KI signature. Average correlations among
disease signatures ranged from r = 0.14–0.29 but were much smaller in magni-
tude with the exclusion of 1KI genes from them.

Socioeconomic status composites, for both young adults and their parents,
represent the sum of the standardized indicators. Education represents the
highest self-reported completed years of education (averaged in cases of two
parents). Income is the gross household income, log-transformed (for parents)
and reported on an ordinal scale (for young adults) with values representing
midpoints of categories and the highest value equaling the lowest value for that
category ($200,000). Occupation represents the socioeconomic index score of

parents’ jobs (highest of two parents) and young adult’s current job (45, 46).
Subjective status in young adulthood was assessed using the MacArthur Scale of
Subjective Social Status, which asks respondents to view a ten-rung ladder as
representative of education, prestige, and money and to pick the step that shows
where they think they currently stand relative to other people in the United
States (47). The Wave V young adult SES composites with and without subjective
status were highly correlated (r = 0.96). Correlations between indicators and
composites of SES are shown in SI Appendix, Fig. S10.

Models. We examined quantitative variations in the abundance levels of genes
in these signatures as a linear function of 1) socioeconomic composites from the
household-of-origin or young adulthood and their constituent indicators (educa-
tion, income, occupational education, and subjective status [assessed in young
adulthood only]) and 2) covariates that are likely to influence mRNA abundance
levels, including sex, race, age, pregnancy status, plate, number of hours fasting
before blood sampling, use of anti-inflammatory medications in the past 4 wk
(e.g., NSAIDS, Cox-2 inhibitors, inhaled corticosteroids), count of common sub-
clinical symptoms in the past 4 wk (e.g., colds, flu, fever), and count of common
infectious or inflammatory diseases in the past 4 wk (e.g., active infection, sea-
sonal allergy), with correction for batch using ComBat. A directed acyclic graph
depicting the generalized linear model is presented in SI Appendix, Fig. S11.
The final models were assessed with and without the inclusion of people with
self-reported diagnosed diseases, with the latter results reported in the main
text (because this specification avoids collider bias) and the former reported in
SI Appendix, Fig. S1.

We examined associations between indicators of SES and subsets of disease
signatures that preserve the distinction between up- and down-regulated genes.
The entire genome was clustered using WGCNA to identify clusters of co-
expressed networks of genes (25 in total) (48). For each disease signature, we
linked each of its genes to whole-genome clusters and, within each cluster, to its
up- or down-regulated subset (i.e., 50 in total). We then averaged the abun-
dance levels of genes for each subset. For further detail, see SI Appendix,
Fig. S12B. Such a classification enabled us to find significant direction-specific
gene sets for each disease signature that were associated with indicators of SES.
This analytic strategy identifies the functional clusters across the genome in the
sample and the relationships among these whole-genome clusters and genes in
the disease signatures. An alternative strategy, which defines clusters within dis-
ease signatures, yielded similar results but is less readily interpretable because
the number of clusters per signature varied considerably. Reliable coexpression
networks cannot be identified within some disease signatures given their small
size and the lack of other gene transcripts beyond the signature.

Finally, we performed a differential expression analysis for those genes not
contained in the signatures. The functional significance of subsets of signatures
and the DE genes was examined with pathway enrichment using Reactome. We
also examined possible mediators of relationships that were observed between
Wave V SES and disease signatures using a counterfactual mediational frame-
work (49). The candidate mediators included commonly studied health risks:
BMI, computed from measured height and weight; current smoking status (self-
reported); alcoholic drinks on days drank over past 30 d [0 drinks, 1–2 drinks,
and 3–5 drinks per occasion, more than 5, which is similar to a coding scheme
that has been used in other papers (50)], perceived stress, based on the short
version of Cohen’s Perceived Stress Scale (51); and financial stress, assessed by
asking respondents whether they had difficulty paying bills (see SI Appendix,
Fig. S7 for correlation matrix) and access to health insurance (1 in case the
respondent did not have health insurance because not offered, considered too
expensive, or they did not want it, 0 otherwise). The average causal mediated
effect (ACME) was estimated for each possible mediator. Viewed in causal terms,
however, these models are premised on strong assumptions (see SI Appendix,
Fig. S11), and thus the results are construed as multivariate descriptions that are
hypothesis-generating.

A summary of the analytic pipeline is shown in SI Appendix, Fig. S12A. All
analyses were conducted using R software, especially the Bioconductor suite
(52), unless noted.

Data, Materials, and Software Availability. Add Health transcriptomic
data are available via a restricted data contract. Additional information and appli-
cation for the restricted-use data can be accessed through the Carolina
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Population Center (CPC) data portal at https://data.cpc.unc.edu/projects/2/view
(53). The rest of the Add Health data are not restricted and is available at https://
www.cpc.unc.edu/projects/addhealth/documentation/ (54). The R code used for
these analyses is available at https://github.com/socialgnome/PNAS-SES (55).
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